Linear Algebra I

08/11/2024, Friday, 15:00 - 17:00

You are NOT allowed to use any type of calculators.

1 Subspaces of \mathbb{R}^n

5 + 10 + 10 = 25 pts

- (a) Let $\lambda \in \mathbb{C}$ and $A \in \mathbb{R}^{n \times n}$. Show that the set $\{x \in \mathbb{R}^n \mid Ax = \lambda x\}$ is a subspace.
- (b) Let X and Y be two subspaces of \mathbb{R}^n .
 - (i) Suppose that $X \not\subseteq Y$. Show that if $X \cup Y$ is a subspace, then $Y \subseteq X$.
 - (ii) Show that $X \cup Y$ is a subspace if and only if $X \subseteq Y$ or $Y \subseteq X$.

2 Diagonalization

4+4+5+6+6=25 pts

Consider the matrix

$$M = egin{bmatrix} 1 & 0 & 1 \ 0 & 1 & 1 \ 1 & 1 & 2 \end{bmatrix}.$$

- (a) Is M diagonalizable? Justify your answer.
- (b) Is M unitarily diagonalizable? Justify your answer.
- (c) Find the eigenvalues of M.
- (d) Find a diagonalizer for M.
- (e) Solve the difference equation

$$oldsymbol{x}_{k+1} = M oldsymbol{x}_k \quad ext{where} \quad oldsymbol{x}_0 = egin{bmatrix} 6 \ 12 \ 12 \end{bmatrix}.$$

Suppose that $N \in \mathbb{F}^{n \times n}$ is a nilpotent matrix, that is $N^k = 0$ for some $k \ge 0$. Let a be a scalar.

- (a) Find the eigenvalues of N.
- (b) Show that $aI_n + N$ is nonsingular if and only if $a \neq 0$.
- (c) Find the characteristic polynomial of $aI_n + N$.
- (d) Find the determinant and trace of $aI_n + N$.

4 Gram-Schmidt process

8 + 2 + 10 = 20 pts

Let $n \geqslant 3$ and x_1, x_2 , and x_3 be vectors in \mathbb{F}^n satisfying

$$\|oldsymbol{x}_1\| = 1$$
 $\|oldsymbol{x}_2\| = \|oldsymbol{x}_3\| = 2$ $oldsymbol{x}_1^*oldsymbol{x}_2 = oldsymbol{x}_2^*oldsymbol{x}_3 = oldsymbol{x}_3^*oldsymbol{x}_1 = 1.$

- (a) Show that x_1 , x_2 , and x_3 are linearly independent.
- (b) Is the set $\{x_1, x_2, x_3\}$ orthonormal?
- (c) By using the Gram-Schmidt process, find an orthonormal set $\{y_1,y_2,y_3\}$ such that

$$\operatorname{span}(\boldsymbol{x}_1,\boldsymbol{x}_2,\boldsymbol{x}_3) = \operatorname{span}(\boldsymbol{y}_1,\boldsymbol{y}_2,\boldsymbol{y}_3).$$

10 pts free